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The maximum load size effect for uncracked brittle
structures
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The paper proceeds from the basis that the dominant source of the maximum load size effect

for uncracked brittle structures is deterministic, and is related to the formation of a damage

(fracture process) zone at a free surface. By modelling this damage behaviour in terms of the

cohesive zone description, and by associating the maximum load with the attainment of an

elastically calculated effective tensile failure stress, the paper projects the view that the

effective stress is critically dependent on the applied loading induced stress gradient

beneath the surface of a structure. The effective tensile failure stress increases with the

steepness of the stress gradient, and we therefore have a ready explanation as to why the

effective tensile failure stress for an uncracked bend beam increses as the beam depth

decreases.
1. Introduction
It is a well known experimental fact that uncracked
brittle structures or laboratory test specimens exhibit
a maximum load size effect. This is best illustrated by
considering the case of an uncracked bend beam speci-
men for which the maximum stress occurs at the
tensile surface. Assuming elastic behaviour, the beam
depth is d and the beam thickness is B, the bending
moment M is equal to Bd2r

4
/6 were r

4
is the tensile

stress at the surface. Experiments, for example with
unreinforced concrete beams, have shown that the
maximum moment M

.
that a beam is able to sustain

is equal to Bd2r
4
/6 with r

4
"r

.
and where r

.
in-

creases as the beam depth d decreases [1, 2]. The
objective of this paper is to focus on the reason why
r
.

should be geometry dependent, and more parti-
cularly as to why it should increase, in the case of
a bend beam, as the beam depth d decreases.

As recently emphasized by Li and Baszant [3], the
underlying cause of the size effect for brittle and quasi-
brittle materials such as concrete, sea ice, rocks, tough
ceramics and composites, stems from the fact that they
exhibit damage (fracture process) zones which are able
to grow in a stable manner prior to the attainment of
maximum load. That being the case, the dominant
source of the size effect is seemingly deterministic, and
is related to the manner in which such a zone develops.
The simplest way of quantifying this type of behaviour
is to use the so-called cohesive zone description,
whereby a single infinitesimally thin two dimensional
cohesive zone starts to form at the surface when the
tensile stress at the surface attains some critical value
p
#
. As the applied load (moment in the case of a bend

beam) increases, the zone spreads away from the sur-
face into the interior of the structure. The zone can be
characterized by a material specific relation between

the tensile stress (p) and the relative displacement (v)
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between the zone faces, with the maximum value of p,
i.e., p

#
, being at the leading edge of the cohesive zone.

The zone is said to be fully developed when the stress
falls to zero at the trailing edge of the zone, i.e., at the
surface of the structure, a situation that is attained
when the displacement v attains a critical value v

#
, i.e.,

when the damage at the surface is sufficiently pro-
nounced. The elastic ‘‘driving’’ stress, (calculated by
assuming there is no zone), forcing the zone to extend
into the solid away from the surface, depends on the
distance from the surface (there is a linear stress fall-off
with a bend beam), and this paper’s prime objective is
to show how the maximum load condition depends on
the stress gradient. For a general p—v cohesive zone
behaviour, the maximum load is attained prior to the
cohesive zone’s full development. However, so as to
simplify the considerations, it will be assumed that the
stress p remains constant at the value p

#
within the

cohesive zone until the displacement v attains the
critical value v

#
when the stress p falls abruptly to zero,

this being the classic Dugdale—Bilby—Cottrell—Swin-
den (DBCS) representation [4, 5]. With this specific
cohesive zone behaviour, the attainment of maximum
load is associated with the full development of the
cohesive zone. The results are expressed in terms of the
way in which the maximum tensile stress r

.
at the

surface, calculated assuming elastic behaviour and
with no cohesive zone, depends on geometry, and in
particular the stress gradient below the surface, and
the cohesive zone properties.

2. The development of a cohesive zone
from a planar surface in a
semi-infinite solid

Consider the situation where there is a cohesive zone,

within which the tensile stress is p

#
, emanating from

3939



Figure 1 The model of a cohesive zone emanating from a planar
surface in a semi-infinite solid.

the planar surface of a semi-infinite solid (Fig. 1). It is
assumed that the tensile ‘‘driving’’ stress p

22
along the

plane X
2
"0 in the absence of the cohesive zone is:

r(x)"r
LA1!

x

hB (1)

where x is measured from X
1
"0 along the X

1
axis;

r
L

is the stress at the surface, and h is a length
parameter which is a measure of the stress gradient.
The isolated crack-infinite body solution can be used
as an approximate solution for our situation by mak-
ing a cut along the plane X

1
"0, this procedure being

exact for the analogous Mode III situation. If s is the
length of the cohesive zone, standard elasticity theory
gives the displacement between the faces of the cohe-
sive zone at the position 0 (see Fig. 1), as [6]:

'"

4

pE
0
P

s

0

Mr(x)!p
#
N lnG

s#(s2!x2 )1@2

s!(s2!x2 )1@2Hdx

(2)

where E
0
"E/(1!m2 ) for plane strain deformation,

E being Young’s modulus and m being Poisson’s ratio.
Furthermore since the stress p

22
is finite ("p

#
) at the

in-board extremity x"s of the cohesive zone, we
must also satisfy the condition [6]:

P
s

0

Mr (x)!p
#
N

(s2!x2)1@2
dx"0 (3)

With r (x) being given by Equation 1, Equation 3
reduces to:

s

h
"

p(r
L
!p

#
)

2r
L

(4)

Furthermore, Equation 2, with '"v
#
, gives the cri-

terion for the zone to be fully developed, i.e., for the
attainment of maximum load, as:

v
#
"

4s (r
L
!p

#
)

E
0

!

4r
L

s
x ln

s#(s2!x2)1@2
dx (5)
pE
0
h P

0
Gs!(s2!x2)1@2H

3940
With x"sin h, the integral I
1
, as given by:

I
1
"P

s

0

x lnG
s#(s2!x2 )1@2

s!(s2!x2 )1@2Hdx (6)

reduces to:

I
1
"!2s2 P

p/2

0

sin h cos h lnAtan
h
2Bdh"s2 (7)

and consequently Equation 5 simplifies to:

v
#
"

4s(r
L
!p

#
)

E
0

!

4r
L
s2

pE
0
h

(8)

Equations 4 and 8 give the criterion for the attainment
of maximum load, expressed in terms of the attain-
ment of an elastically calculated stress r

.
at the sur-

face, i.e., r
L
"r

.
in Equations 4 and 8, as:

r
.

p
#

"1#
E

0
v
#

2php
#

#AA1#
E
0
v
#

2php
#
B
2
!1B

1@2
(9)

Thus with G
F
"v

#
p
#

being the specific energy asso-
ciated with the failure within the cohesive zone and
with v"E

0
G

F
/pp2

#
h, Equation 9 can be written in the

form:

r
.

p
#

"1#
v

2
#Av#

v2

4 B
1@2

(10)

or, with the terminology of Elices and Planas [7],
whereby l

#)
,E

0
G

F
/p2

#
is a material size parameter,

r
.

p
#

"1#
l
#)

2ph
#A

l
#)
ph

#

l2
#)

4p2h2B
1@2

(11)

The cohesive zone size s
.

upon the attainment of
maximum load is given by Equations 4, 10 and 11 as:

s
.
h
"

p

2 AAv#
v2

4 B
1@2

!

v

2B (12)

or

s
.
h
"

p
2 AA

l
#)

ph
#

l2
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4p2h2B
1@2
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l
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2phB (13)

The maximum stress results as given by Equations 10
and 11 are shown in Fig. 2, and the cohesive zone size
results are shown in Fig. 3. The maximum stress re-
sults (Fig. 2) clearly highlight the fact that as the stress
gradient increases, i.e., h decreases, then the maximum
effective failure stress increases.

Figure 2 The maximum effective failure stress r
.

for the semi-
infinite solid model expressed in terms of the parameter

v"E

0
G

F
/pp2

#
h"l

#)
/ph .



Figure 3 The cohesive zone size s
.

upon the attainment of the
maximum stress state for the semi-infinite solid model expressed in
terms of the parameter v"E

0
G

F
/pp2

#
h"l

#)
/ph .

3. The development of a cohesive zone
from a planar surface in a finite depth
bend specimen

Fig. 4 shows the model of a cohesive zone, within
which the tensile stress is p

#
, emanating from a planar

surface of a bend specimen of finite depth d, thickness
B and infinite length in the other direction. When the
bending moment is M and the cohesive zone size is R,
the relative displacement between the faces of the
cohesive zone at the position O (see Fig. 4) is given by
the following expression

'"

24MR

E
0
Bd2

» (R/d)!
4p

#
R

E
0

»
1
(R/d) (14)

the first term arising from the applied bending
moment M, and the second term being due to the
restraining stress within the cohesive zone; the func-
tions » and »

1
have been given in graphical form [6].

Furthermore since the stress must be finite ("p
#
) at

the extremity of the cohesive zone, the stress intensity
due to the applied moment at the in-board tip of the
cohesive zone (viewed as a crack) must equate with the
stress intensity due to the restraining stress within the
cohesive zone, i.e.,

6M

Bd2
(pR)1@2G(R/d)"p

#
(pR)1@2F(R/d) (15)

with the functions F and G having been given in
graphical form [6]. Proceeding from the basis that the
attainment of maximum load (moment) occurs when
' attains the critical value v

#
and that this state

is associated with the attainment of an elastically
calculated effective stress r

.
at the surface, i.e.,

r
.
"6M

.
/Bd2 where M

.
is the maximum moment,

then Equations 14 and 15 allow r
.

to be obtained
since they can be rewritten in the form:

r
.

p
#

"

F (R/d)

G (R/d)
(16)

and

v
*
"

E
0
G

F
4p2

#
d

l
#)

R F (R/d)»(R/d)

"

4d
"
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remembering that G
F
"p

#
v
#
and l

#)
"E

0
G

F
/p2

#
. It is

therefore possible to obtain r
.
/p

#
in terms of the

parameter v
*
"E

0
G

F
/4p2

#
d"l

#)
/4d, by selecting

values of R/w and using the tabulated values of the
functions F, G, » and »

1
. The results are shown in

Table I and also in Fig. 5, while Fig. 6 shows the
cohesive zone size R

.
at maximum load. As with the

semi-infinite solid model, the maximum stress results

Figure 4 The model of a cohesive zone emanating from a planar
surface in a finite depth bend specimen.

TABLE I r
.

for the finite depth bend specimen in terms of the
parameter v

*
"E

0
G

F
/4p2

#
d"l

#)
/4d

R/d F(R/d) G(R/d) »(R/d) »
1
(R/d) r

.
/p

#
v
*

0 1.122 1.122 1.460 1.460 1.000 0
0.1 1.206 1.042 1.457 1.543 1.157 0.014
0.2 1.369 1.047 1.602 1.828 1.308 0.053
0.3 1.655 1.109 1.898 2.327 1.492 0.152
0.4 2.107 1.247 2.389 3.278 1.690 0.303
0.5 2.825 1.497 3.200 5.000 1.887 0.519

Figure 5 The maximum effective failure stress r
.

for the finite
depth (d) bend specimen expressed in terms of the parameter

v
*
"E

0
G

F
/4p2

#
d"l

#)
/4d .
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Figure 6 The cohesive zone size R
.

upon the attainment of the
maximum load state for the finite depth (d) bend specimen ex-
pressed in terms of the parameter v

*
"E

0
G

F
/4p2

#
d"l

#)
/4d .

(Fig. 5) for the finite depth beam model highlight the
fact that as the stress gradient increases, i.e., the beam
depth d decreases, then the maximum effective stress
increases.

4. Discussion
This paper has been concerned with the maximum
load size effect for uncracked brittle structures. Pro-
ceeding from the basis that the dominant source of the
size effect is deterministic, and is related to the devel-
opment of a damage (fracture process) zone from a free
surface, the paper has modelled the behaviour of such
a zone by allowing all the non-linearity of material
behaviour to be concentrated within an infinitesimally
thin cohesive zone within which the restraining stress
retains a constant value p

#
until the relative displace-

ment across the zone attains a critical value v
#

when
the restraining stress p falls abruptly from p

#
to zero.

The results have been expressed in terms of an elasti-
cally calculated effective tensile stress r

.
at the free

surface of a structure.
Analysis of (a) the model of a semi-infinite solid

subjected to a ‘‘driving’’ stress gradient (section 2) and
(b) the model of a finite depth bend beam specimen
(section 3) supports the view that r

.
is critically de-

pendent on the stress gradient below the surface of

a structure, with r

.
increasing the steeper is the stress
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gradient. The theoretical predictions are consistent
with experimental results [1, 2] for uncracked bend
beams, which show that r

.
increases as the beam

depth decreases.
Before concluding this paper, it should be noted

that the author, unlike Bazant [8], and Elices and
Planas [7], has not assumed the existence of a pre-
existing crack and then considered the smooth surface
situation as a limiting case. The author prefers the
approach that has been adopted in this paper, because
it avoids the complexities associated with proceeding
to a limit, and thereby allows the origins of the size
effect to be projected in a more transparent manner.

5. Conclusion
This paper has shown how the maximum load size
effect for uncracked brittle structures is related to the
way in which the effective tensile stress at the surface is
dependent on the applied stress gradient below the
surface, in that the effective tensile stress increases with
the steepness of his gradient, for example as the depth
of a bend specimen decreases.
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